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A B S T R A C T

Intrusion Detection Systems (IDS) increasingly leverage machine learning (ML) to enhance the detection of
zero-day attacks. As operational complexities increase, enterprises are turning to Intrusion Detection as a
Service (IDaS), requiring advanced solutions for efficient ML model selection and resource allocation. Existing
research often focuses primarily on accuracy and computational efficiency, leaving a gap in solutions that can
dynamically adapt. This study introduces a novel integrated solution, Auto-IDaS, which employs advanced
Reinforcement Learning (RL) techniques for real-time, adaptive management of IDS. Auto-IDaS uses the
Deep Q-Network (DQN) algorithm for dynamic ML model selection, automatically adjusting configurations
of IDaS in response to fluctuating network traffic conditions. Simultaneously, it utilizes the Twin Delayed
Deep Deterministic (TD3) algorithm for optimizing capacity allocation, aiming to minimize computational
costs while maintaining service quality. This dual approach is innovative in its use of RL to address both
selection and allocation challenges within IDaS frameworks. The effectiveness of TD3 is compared against
Simulated Annealing (SA), a traditional optimization technique. The results demonstrate that utilizing DQN
to dynamically select the model significantly improves the reward by 0.29% to 27.04%, effectively balancing
detection performance (F1 score), detection time, and computation cost. Regarding capacity allocation, TD3
accelerates decision times approximately 5 × 106 times faster than SA while retaining decision quality within
a 10% range comparable to SA’s performance.
1. Introduction

In recent years, due to the fast-evolving nature of network threats,
IDS have become a vital component of cybersecurity, with a current
emphasis on employing ML to improve detection capabilities. ML-based
IDS tasks range from preprocessing to traffic detection or classification.
Preprocessing involves extracting features and discarding irrelevant
data from the raw input. Subsequently, ML-based IDS employs either
binary detection, which classifies network traffic as benign or mali-
cious (Nassif et al., 2021), or multi-class classification, which identifies
specific types of malicious traffic (Masdari and Khezri, 2020). Addi-
tionally, a two-stage machine learning model combines these methods,
enhancing the detection rate for various attacks (Verkerken et al.,
2023).

However, developing an ML-based IDS system requires knowledge
of AI and cybersecurity, resulting in high development and manage-
ment costs. Therefore, the concept of Intrusion Detection as a Service
(IDaS) has emerged, where subscribers can offload those development
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and management processes to service providers (Lai et al., 2021). This
concept reduces the operational and development costs, making the
service more accessible and affordable for subscribers.

From a service provider’s perspective, there are key considerations
in choosing the right IDS models for IDaS. The choices range from
a straightforward single-stage model using either binary detection or
multi-class classification, to a more complex two-stage model that
combines both methods. Binary detection offers simplicity, lower cost,
and faster detection time but does not provide detailed threat in-
sights, which can be critical for effective mitigation (Omar et al.,
2013; Nandanwar and Katarya, 2024). Multi-class classification, while
offering deeper insights into attack types, it may come with increased
costs, longer detection times, and the risk of failing to detect zero-day
attacks (Holm, 2014; Xu et al., 2023). A two-stage model integrates
the strengths of both, though at a higher computational cost. When
selecting the appropriate IDS models, it is crucial to evaluate the ac-
curacy and the F1 score for detecting various attacks, detection speed,
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and computational expenses. This study seeks to balance these factors
to enhance IDaS effectiveness.

The second aspect crucial for service providers offering IDaS is
the strategic allocation of resources across the service architecture,
which often involves multi-tier systems including cloud, edge, and fog
layers (Bierzynski et al., 2017). In this setup, tasks like preprocessing
may occur in the fog, binary classification at the edge, and multi-class
classification in the cloud. Each tier then requires specific computa-
tional capacity allocations based on cost considerations, as computing
resource costs vary by tier. Efficient capacity allocation is vital, as it
impacts both the performance and the cost-efficiency of the service.
Service providers aim to configure these capacities to minimize costs
while adhering to delay constraints, thereby optimizing the balance
between operational efficiency and service quality in IDaS.

The increasing complexity and dynamics of networks create chal-
lenges in efficiently selecting IDS models and allocating capacities
manually, underscoring the need for automation. Previous research
in service management has primarily concentrated on three areas:
resource management (Diro and Chilamkurti, 2018; Sundararaj, 2019;
Zeng et al., 2019), which allocates computing resources, task manage-
ment (De Souza et al., 2020; Almiani et al., 2020; Qu et al., 2021; Zhu
et al., 2022), focusing on task assignment and effectiveness, and their
joint optimization (Lai et al., 2021; Bovenzi et al., 2020; Idhammad
et al., 2018; Zhang et al., 2017). While these studies provide valuable
insights, they often treat resource and task management separately
without considering their interdependencies and typically focus on de-
tection times, neglecting other critical factors. Furthermore, they do not
adequately address the need for an adaptive service management model
that can dynamically configure IDS models, tasks, and resources in
response to evolving cybersecurity threats, and traditional optimization
methods have proven too slow for these complex optimizations.

This study introduces an integrated solution named Auto-IDaS with
RL, which addresses the challenges of auto-model selection and capac-
ity allocation. The model selection problem in IDaS is solved with a
dynamic model selection solution to adaptively choose the most suit-
able IDS models in response to fluctuating traffic conditions. RL plays
a pivotal role by comprehensively understanding the system’s behavior
and making informed decisions in real-time, thus enabling the adaptive
selection of IDS models that balance crucial metrics such as the F1 score
of detecting variant attacks, detection time, and computation costs. This
solution enables service providers to have a flexible IDS model that can
adjust to current network traffic, ensuring efficiency and effectiveness.

Moreover, in addressing the challenge of optimizing capacity al-
location within the IDaS system, we leverage RL in Auto-IDaS with
the goal of minimizing computation costs. This method contrasts with
traditional optimization techniques by focusing on reducing the long
convergence times typically associated with them. Through RL, the
system is able to dynamically adjust to changes, learn from network
behavior, and anticipate future demands, leading to a more expedient
and effective decision-making process. Upon completion of the op-
timization, we offer service providers strategic recommendations for
managing IDaS. These insights provide valuable direction for service
providers to enhance their IDaS offerings for customers.

To deepen our understanding, we conducted comprehensive eval-
uations across several dimensions. We examined the IDS model se-
lection, comparing single- and two-stage IDS models, to investigate
how different configurations perform in handling malicious traffic.
We also explored model selection, assessing both dynamic and static
approaches to determine the performance of a dynamic model in
selecting appropriate models in response to changing traffic patterns.
Additionally, we considered various architecture alternatives, including
1-tier, 2-tier, and 3-tier networks, to evaluate how different network
architectures manage IDaS traffic. Finally, we compared traditional
optimization methods with RL to investigate the relative performance
of these optimization techniques.

In relation to related work, the contributions of this paper are
2

three-fold:
• To the best of our knowledge, this is the first study that identifies
the dual challenge of adaptive IDS model selection and efficient
capacity allocation within multi-tier IDaS architectures, which are
crucial for the effectiveness and cost-efficiency of cybersecurity
services.

• We introduce an integrated solution named Auto-IDaS, which
utilizes RL to dynamically select IDS models and optimize capac-
ity allocation. This addresses the requirement for adaptability in
response to evolving network conditions and cost constraints. The
technical contributions of our Auto-IDaS solution are as follows:

– Novel Integration of RL Algorithms: We innovatively
combine DQN and TD3 within a unified framework tailored
for IDaS. This integrated approach is designed to handle
the dynamic and complex requirements of real-time model
selection and capacity allocation, which existing research
has not explored within the IDS field.

– Adaptation and Fine-Tuning for IDaS: The adaptation of
DQN and TD3 for the specific challenges of intrusion de-
tection represents a significant advancement. We have fine-
tuned these algorithms to the peculiarities of network traffic
patterns and attack behaviors, requiring a deep understand-
ing of both cybersecurity and reinforcement learning.

– Real-World Applicability: Auto-IDaS is among the first
frameworks to apply these RL algorithms to the practi-
cal domain of IDaS, showing not only that they work in
theory but also providing actionable insights and tangible
improvements in a critical area of cybersecurity.

• We conduct a thorough evaluation of our RL-based approach in-
volving various IDS models and IDS architectural configurations.
This demonstrates the advantages of our approach over tradi-
tional methods. The robustness of Auto-IDaS is validated under
various scenarios that mimic real-world conditions, underscoring
the applicability and effectiveness of our model.

This work is organized into six sections. In Section 2, the back-
ground and related work are presented. Section 3 presents the problem
formulation for IDS model selection and IDaS task assignments and
capacities. In Section 4, the proposed solution approaches are discussed
in detail. Section 5 presents the results of the experiments conducted
to evaluate the performance of the proposed approach. Finally, in
Section 6, the conclusions of the study are summarized, and future
research directions are outlined.

2. Background and related work

This section begins with an overview of the technical background
of this work, including multi-tier architecture, task assignment for
IDaS, and the algorithms we implement for managing IDaS. At the
end of this section, we compare the differences with other studies in
terms of ML-based distributed IDS, task assignments, and capacities
optimization.

2.1. Multi-tier architecture

Distributed architecture can provide a viable solution to the limita-
tions of centralized systems by enabling parallel computing and prox-
imity to users. This can be achieved by leveraging ‘‘multi-tier’’ systems
consisting of multiple nodes, where tasks can be distributed among the
components. With the advent of cloud, edge, and fog computing, these
technologies have become promising paradigms that can be integrated
into multi-tier architecture systems. Cloud computing offers many ad-
vantages, including flexibility, scalability, and cost-effectiveness, but
it is far from the end-users, which can lead to slow response times.
Edge and fog computing is designed to solve the issues by bringing

computing resources closer to the user. However, these technologies
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Table 1
Task assignments with single- and two-stage IDS model.

Stage type Number of tiers Architecture Fog Edge Cloud ID Abbreviation

Single-stage
IDS model

1
Fog p, b(m) 1 pb(m)/–/–
Edge p, b(m) 2 –/pb(m)/–
Cloud p, b(m) 3 –/–/pb(m)

2
Fog–Edge p b(m) 4 p/b(m)/–
Fog–Cloud p b(m) 5 p/–/b(m)
Edge–Cloud p b(m) 6 –/p/b(m)

Two-stage
IDS model

1
Fog p, b, m 7 pbm/–/–
Edge p, b, m 8 –/pbm/–
Cloud p, b, m 9 –/–/pbm

2

Fog–Edge p, b m 10 pb/m/–
Fog–Cloud p, b m 11 pb/–/m
Edge–Cloud p, b m 12 –/pb/m
Fog–Edge p b, m 13 p/bm/–
Fog–Cloud p b, m 14 p/–/bm
Edge–Cloud p b, m 15 –/p/bm

3 Fog–Edge–Cloud p b m 16 p/b/m
have limited capacity, making them ideal for small-scale applications.
Combining cloud, edge, and fog to build a multi-tier architecture can
effectively manage a diverse range of services with varying character-
istics, all while ensuring both availability and reliability (Bierzynski
et al., 2017).

2.2. Task assignment for IDaS

IDaS uses a multi-tier architecture and combines IDS tasks, includ-
ing pre-processing, binary detection, and multi-class classification, to
detect or classify malicious traffic in a computer network.

These tasks can be decomposed and mapped to multi-tier architec-
ture, resulting in a total of 16 possible task assignments, as shown
in Table 1. In this work, we use IDs and abbreviations to symbolize
the tasks and placements (xxx/xxx/xxx). The left, middle, and right
represent fog, edge, and cloud, respectively. The symbols p, b, and m
represent pre-processing, binary detection, and multi-class classifica-
tion, respectively. If no task is placed in this part, it will be represented
by ‘-’ (Lai et al., 2021). In a single-stage IDS model, b(m) means it
may be either binary or multi-class. For example, task assignment 16
adopts a three-tier architecture with a two-stage ML model, abbreviated
as p/b/m, indicating pre-processing, binary, and multi-class, placed in
fog, edge, and cloud, respectively.

2.3. Optimization algorithms

This subsection introduces the two algorithms used to address our
problems. Firstly, we employ RL to dynamically select IDS models and
optimize resource costs. Additionally, we utilize the SA algorithm to
optimize capacity allocation for performance comparison with RL. Our
selection of SA was informed by its well-established reputation and
proven track record in a wide range of optimization tasks, particularly
in system architecture optimizations (Kar et al., 2023; Jin et al., 2022;
Mahjoubi et al., 2022). SA is recognized for its ability to achieve a near-
global optimum solution, a critical attribute when dealing with complex
and high-dimensional optimization problems like those encountered in
IDaS.

SA’s methodology, which involves an exhaustive search process that
evaluates the current solution against potential alternatives generated
through a random function, is integral to its capability to escape local
optima and explore a broader solution space. This attribute is especially
beneficial in IDS settings, where the landscape of potential solutions
can be rugged and highly variable.

There are different machine learning types, including supervised,
unsupervised, and RL. Supervised learning requires labeling all traffic
data, while unsupervised learning is used for current prediction without
3

labeling data. RL does not require labeled data and is used for future
prediction (Sutton and Barto, 2018). In this work, we need to learn from
the network, which is difficult to label the data and obsolete to predict
the current state. Thus, we chose RL with the aim of finding a balance
between exploration and exploitation to achieve optimal performance.

RL involves at least one agent learning to make decisions by in-
teracting with the environment. The environment is represented by its
current state, and the agent takes actions to move from one state to the
next. There are two types of actions: discrete actions and continuous
actions. The main difference between them is the types of actions
available, where a discrete action space is a finite predefined set, while
a continuous action space involves continuous variables.

There are various algorithms for RL, including model-free and
model-based, where the former represents algorithms that learn di-
rectly from interactions with the environment without a model of
its dynamics, focusing on learning the value of actions or policies
through trial and error; and the latter represents algorithms that involve
creating and utilizing a model of the environment’s dynamics to make
decisions, allowing for planning and potentially more efficient learning,
but requiring an accurate model for effective application. A model of
the dynamics in the context of RL refers to a representation or approx-
imation of how the environment behaves and changes in response to
the actions taken by the learning agent.

In this work, we selected model-free algorithms for our IDaS frame-
work due to the network environment’s lack of reliable prior knowl-
edge of transition probabilities and reward functions between states.
Between the three categories of model-free RL — policy-based, value-
based, and actor–critic — the value-based Deep Q-Network (DQN)
and the actor–critic Twin Delayed Deep Deterministic Policy Gradient
(TD3) were chosen for their theoretical soundness and proven practical
efficacy.

DQN, a value-based algorithm, integrates Q-learning with deep neu-
ral networks to manage environments with high-dimensional and dis-
crete action spaces effectively. Its ability to optimize discrete decision-
making processes has been demonstrated in domains such as video
gaming and robotic control, where it achieves performance comparable
to human levels. This makes DQN particularly suited for IDS model
selection, where the action space is discrete and Q-values directly
inform the optimal weighting between different model combinations.

On the other hand, TD3, an enhancement of the actor–critic method,
employs techniques such as double Q-learning and policy updates to
prevent value overestimations and enhance policy stability, respec-
tively. Its additional use of target policy smoothing regularization
broadens exploration spaces, leading to faster convergence times com-
pared to other actor–critic algorithms (Fujimoto et al., 2018). TD3’s
application in fields requiring continuous action decision-making, such
as financial portfolio optimization and dynamic robotics movement,
underscores its adaptability and effectiveness.
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Table 2
Summary of the research on distributed IDS and service management.

Paper Category Service IDS tasks Architecture Optimization part Method Purpose

IDS Others P B M F E C

Cil et al. (2021)

Model
management O X

X O X X X X DL model Feed forward DNN Accuracy
Nandanwar and
Katarya (2024)

X X O O X X DL model CNN-GRU Accuracy

Diro and
Chilamkurti (2018)

X O O O X DL model Federated LSTM Accuracy

Syed et al. (2023) O O X O X O DL model RNN Accuracy

Selamnia et al.
(2022)

X

X

O

X O DL model FL with DNN Accuracy

Bovenzi et al.
(2020) O

X

X

DL model Multi-modal DAE Accuracy

Labiod et al. (2022)
O X

DL model vAE with MLP Accuracy
Antonio et al.
(2020)

DL model DNN-KNN Accuracy

Almiani et al.
(2020)

DL model RNN Accuracy

Sundararaj (2019)

Resource
management

X O X X X X

X O Offloading Ant-Bee Minimizeexecution time

Zeng et al. (2019)
O

X Service migration Deep RL Minimizeoperational cost

Qu et al. (2021)

O

Task offloading Deep RL Minimize delay

Mahjoubi et al.
(2022)

Task scheduling SA Minimize delay

Zhang et al. (2017) X Resource
configuration

Deep RL Minimize cost

Lai et al. (2021)
O X O O O O O

Capacity allocation SA Minimize delay
Lai et al. (2023) Cost allocation SA Minimize delay

Auto-IDaS
(Ours)

Model & Resource
management

Model selection &
resource allocation

RL Minimize cost

P/B/M: Preprocessing/Binary/Multi-class.
F/E/C: Fog/Edge/Cloud.
O/X: Applied/Not Applied.
In the context of IDaS, the selected algorithms — DQN and TD3
— facilitate an adaptive and efficient configuration of service mod-
els in response to dynamic network conditions. Their capability to
continuously learn and make optimized decisions from a changing
environment aligns perfectly with the needs of IDaS, which involves
managing varying traffic patterns and evolving threat landscapes. This
alignment not only demonstrates the suitability of these algorithms for
our application but also ensures that the service models are both robust
and responsive to real-world challenges.

Furthermore, the SA algorithm is a global optimization technique
inspired by the annealing process in metallurgy. The motivation behind
the SA algorithm is to avoid getting trapped in local optima and find
the global optimum solution (Bertsimas and Tsitsiklis, 1993). In the SA
algorithm, a random initial solution is selected and gradually improved
by allowing for uphill moves (i.e., accepting worse solutions with some
probability) to escape from local optima. As the algorithm proceeds, the
temperature gradually decreases, and correspondingly, the probability
of accepting a worse solution also decreases. This cooling process
allows the algorithm to explore the solution space thoroughly. While
simulated annealing is designed to converge towards the global opti-
mum over time, it does not guarantee that the absolute global optimum
will always be found, but rather, it often arrives at a solution that is
close to the optimum.

2.4. Related works

The research of service management on distributed IDS systems has
been extensively studied. In the landscape of this research, the domain
can be broadly classified into two categories: model management and
resource management. Table 2 summarizes the related papers to this
study, elaborating on the respective service, the utilized IDS tasks,
the architectures they employ, the focus of their optimization part,
the method they use, and their purpose. In Table 2, the symbol ‘O’
4

indicates that a feature or characteristic is included or applicable
(‘applied/yes’), while ‘X’ signifies that it is excluded or not applicable
(‘not applied/no’).

In the domain of model management, the primary focus is on IDS
services. Various works have attempted to enhance system accuracy by
optimizing DL models in this domain. For example, Cil et al. (2021)
employed a Feed Forward DNN to improve the accuracy of IDS mod-
els against DDoS attack, Nandanwar and Katarya (2024) employed
CNN-GRU to enhance the accuracy of IDS models for IIoT. Diro and
Chilamkurti (2018) explored the utilization of both binary and multi-
class tasks, implementing their federated Long Short-Term Memory
(LSTM) model within a fog computing architecture. Syed et al. (2023)
employed a Recurrent Neural Network (RNN). Similarly, Selamnia et al.
(2022) integrated a Deep Learning model with a federated approach,
and Bovenzi et al. (2020) adopted a multi-modal Deep Autoencoder
(DAE). Papers Labiod et al. (2022) and Antonio et al. (2020) advanced
this approach by incorporating Variational Autoencoders (VAE) with
Multi-Layer Perceptrons (MLP) and a hybrid Deep Neural Network and
K-Nearest Neighbors (DNN-KNN) method, respectively. However, these
works often do not delve into the deployment details of the architecture
or how well the proposed models handle varying traffic in different
architectural settings.

On the other hand, the resource management category has a dif-
ferent focus, dealing with the use of architecture, optimization parts,
and the purpose of the management systems. For example, Sundararaj
(2019) utilized offloading with an ‘Ant-Bee’ algorithm to minimize
execution time, while Zeng et al. (2019) discussed service migration
using Deep RL to reduce operational costs, and Mahjoubi et al. (2022)
focused on task scheduling using SA. Qu et al. (2021) highlighted task
offloading, and Zhang et al. (2017) concentrated on resource configura-
tion, both employing Deep RL to minimize delay and cost, respectively.
Papers Lai et al. (2021) and Lai et al. (2023) are more closely related
to our work, emphasizing capacity allocation with the objective of
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minimizing computation delay. These studies mainly utilized SA, which
has a longer convergence time than RL.

Our work stands apart from these previous studies by not only
focusing on capacity allocation but also on the autonomous selec-
tion of the appropriate model. We recognize that the combination of
model and resource management is critical for efficient IDaS service
deployment for service providers. Our novel approach combines model
selection with capacity allocation, leveraging RL for faster convergence
and better adaptability to dynamic conditions, thereby addressing the
limitations of prior work in both categories.

3. System architecture and problem formulation

This section provides an explanation of system architecture, prob-
lem formulation, and a delay model. Incorporating the delay model
with queueing theory is essential for simulating real-time processing
demands in IDaS. It anticipates bottlenecks, optimizes capacity alloca-
tion and ensures efficient system response to threats. This framework
mitigates delay impacts, enabling resilient and efficient IDaS systems
design.

The variables and notations that were utilized are outlined in Ta-
ble 3. For problem formulation, we divided it into two parts: IDS model
selection and optimizing capacity allocation.

3.1. Notation table

Table 3 shows the used notation in this work, which is classified
into five categories: topology, IDS model, network, service capacity,
and performance. Topology encompasses the IDaS architecture, which
refers to the layout of the system and the nature of the tasks to be
performed. IDS models represent ML-based IDS models. The network
shows the behavior in IDaS pertains to the interaction between the var-
ious components of the system. Service capacity includes the amount
of data and processing that is sufficient to handle the task. Finally,
performance is defined as the ability to provide efficient solutions to
problems.

3.2. IDS model selection problem

In this study, we deploy binary detection and multi-class classi-
fication, with different services having different attack detection ca-
pabilities and response performance. The choice between a single or
two-stage IDS model may vary depending on different factors.

The arrival traffic rate, probability of malicious flows, the set of
binary models, and multi-class classification models are inputs crucial
for achieving the goal of maximizing the reward for the optimal IDS
model selection. This selection could involve a single-stage IDS model
utilizing a binary or multi-class model or a two-stage IDS model com-
bining both types. The objective is to identify the optimal IDS model
selection capable of effectively handling diverse network conditions.
The optimal IDS model selection reward is determined by three key
factors: detection performance measured by the F1 score, detection
time, and computation cost. A higher F1 score, indicating improved
detection accuracy, contributes positively to the reward, as do shorter
detection times and lower computational costs.

The detailed formula for this reward calculation is explained in
Section 4.1. This formula is carefully designed to strike an optimal
balance between effective threat detection, fast detection response, and
efficient resource usage, ensuring that the chosen IDS model is not only
accurate but also capable of dynamic adaptation to changing traffic
conditions. The formal definition of the problem statement is provided
as follows

• Input:

– Arrival traffic rate (𝜆)
– Probability of malicious flow (𝑝𝐴)
5

Fig. 1. IDaS architecture.

– Set of binary models (𝐵)
– Set of multi-class models (𝐺)

• Output:

– The optimal IDS model selection 𝑓𝑄∗

• Objective:

– Maximize the reward of the IDS model selection (𝑃 × 𝑝𝐴 −
(𝑈 + 𝑆𝑄) × 𝜆)

• Constraint:

– F1 score of the combination of IDS model (𝑃 ) ≥ threshold
(𝛥𝑃 )

– Detection time (𝑈) ≤ threshold (𝛥𝑈 )
– Computation cost for IDS model (𝑆𝑄) ≤ threshold (𝛥𝑆𝑄 )

3.3. Optimization for task assignments and capacities problem

System architectures
Fig. 1 illustrates the IDaS architecture, which consists of a multi-tier

architecture comprising one cloud, 𝑀 edge nodes, and 𝑁 fog nodes
located beneath the edge nodes. We then need to align the optimal
IDS model selection, denoted as 𝑓𝑄∗ , which are the outcomes of the
model selection process, with the pre-processing task to the network
architecture. This may involve employing either a single-stage or a
multi-stage model.

Both single-stage and two-stage IDS models involve preprocessing
tasks. This preprocessing task will be executed at the lowest-tier node,
which could be located at the fog, edge, or cloud levels. Upon the
arrival of traffic flow from user equipment (UE) at the lowest-tier node,
with a length of 1∕𝜇𝐿

1 , it undergoes the preprocessing stage with a work-
load of 1∕𝜇𝑊

1 . This stage involves extracting features and eliminating
irrelevant parts from raw data for machine learning detection, resulting
in a reduced flow length.

Subsequently, in the case of a single-stage IDS model utilizing a
binary model, the data with a flow length of 1∕𝜇𝐿

2 passes through
binary detection with a workload of 1∕𝜇𝑊

2 . If a multi-class model
is used, the data with a flow length of 1∕𝜇𝐿

3 undergoes multi-class
classification with a workload of 1∕𝜇𝑊

3 . Additionally, in a two-stage
IDS model scenario, the data is first processed through binary detection
with a workload of 1∕𝜇𝑊

2 . Subsequently, only malicious traffic with
a probability of 𝑝𝐴 and flow length of 1∕𝜇𝐿

3 is forwarded to multi-
class classification to classify specific attack classes, with a workload
of 1∕𝜇𝑊

3 .

Problem statement
The output of the previous problem, which is a combination of IDS

models, along with the parameters of one cloud, edge nodes, fog nodes,
arrival traffic rate, flow lengths, and workloads, the probability of
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Table 3
Notations.

Category Notation Meaning Attr

Topology

𝑀 Number of edges Input
𝑁 Number of fogs for each edge Input
𝑖 IDS task and models

(1: pre-processing, 2: binary model, 3: multi-class model)
Input

IDS model

𝑌 Number of binary models Input
𝐾 Number of multi-class models Input
𝑓𝐵
𝑦 Binary detection model

𝑦 = {1, 2,… , 𝑌 }
Input

𝑓𝐺
𝑘 Multi-class classification model

𝑘 = {1, 2,… , 𝐾}
Input

𝐵 Set of binary models
𝐵 = {𝑓𝐵

1 , 𝑓𝐵
2 ,… , 𝑓𝐵

𝑌 }
Input

𝐺 Set of multi-class models
𝐺 = {𝑓𝐺

1 , 𝑓𝐺
2 ,… , 𝑓𝐺

𝐾 }
Input

𝑓𝑄 The selected algorithm action Output
𝑓𝑄∗ The optimal IDS model selection Output

Network

𝜆 Arrival traffic rate Input
1∕𝜇𝐿

𝑖 Flow length Input
1∕𝜇𝑊

𝑖 Flow workload Input
𝐶𝑈𝐹 Link bandwidth from UE to fog Input
𝐶𝐹𝐸 Link bandwidth from fog to edge Input
𝐶𝐸𝐶 Link bandwidth from edge to cloud Input
𝑝𝐴 Probability of malicious flows Input
𝑍𝑈𝐹 Propagation delay between UE and fog Input
𝑍𝐹𝐸 Propagation delay between fog and edge Input
𝑍𝐸𝐶 Propagation delay between edge and cloud Input

Service capacity

𝐶𝐶 Computation capacity of cloud Output
𝐶𝐸 Computation capacity of edge Output
𝐶𝐹 Computation capacity of fog Output
𝑆𝐶 Cost per unit of capacity in cloud Input
𝑆𝐸 Cost per unit of capacity in edge Input
𝑆𝐹 Cost per unit of capacity in fog Input

Performance

𝑃 F1-score of IDS model Output
𝑈 Detection time of IDS model Output
𝑆𝑄 Computation cost of IDS model Output
𝑆𝑇 Total cost of IDaS architecture Output
𝐷 Total delay of IDaS Output
𝛥𝑋 Threshold. 𝑋 = {𝑃 ,𝐷,𝑈, 𝑆𝑄} Input
malicious flow, propagation delay, link bandwidths between each node,
and the cost per unit capacity for cloud, edge, and fog, serve as inputs
for determining the optimal task assignment. This objective is subject
to the constraint that the total delay must not exceed the threshold 𝛥𝐷.
To accomplish this, it is necessary to appropriately allocate capacity to
each tier based on the computation cost. The following is the formal
definition of the problem

• Input:

– Optimal IDS model selection (𝑓𝑄∗ )
– 𝑀 edge nodes
– 𝑁 fog nodes per edge node
– Arrival traffic rate (𝜆)
– Flow length (1∕𝜇𝐿

𝑖 )
– Flow workload (1∕𝜇𝑊

𝑖 )
– Probability of malicious flows (𝑝𝐴)
– Link bandwidth (𝐶𝑈𝐹 , 𝐶𝐹𝐸 , 𝐶𝐸𝐶 )
– Propagation delay between tiers (𝑍𝑈𝐹 , 𝑍𝐹𝐸 , 𝑍𝐸𝐶 )
– Cost per unit of capacity (𝑆𝐹 , 𝑆𝐸 , 𝑆𝐶 )

• Output:

– The allocation of capacity to each tier (𝐶𝐹 , 𝐶𝐸 , 𝐶𝐶 ) and
corresponding task assignment

• Objective:

– Minimize the total cost: 𝑆𝑇 = 𝐶𝐹𝑆𝐹 + 𝐶𝐸𝑆𝐸 + 𝐶𝐶𝑆𝐶

• Constraint:
6

– The total delay (𝐷) ≤ threshold (𝛥𝐷)

Delay model
The delay model utilized in this study employs queueing theory to

simulate and examine data transmission and processing delays. This
approach adeptly captures the dynamics of network traffic and service
mechanisms within IDaS systems. The representation is tailored to
handle scenarios characterized by arrivals following a Poisson process
and exponentially distributed service times, ensuring a realistic and
effective simulation.

This model is instrumental in understanding and predicting the
system’s behavior across various load conditions, offering insights into
average wait times and queue lengths. Such information proves crucial
for designing and optimizing network architectures, especially in ensur-
ing the efficient transmission and processing of data while minimizing
delay in IDaS operations. In this subsection, we provide a detailed
exploration of the employed delay model and its calculation process.

In order to calculate the total delay in each network component,
including transmission, computation, and propagation delays, we have
to know the task size, the arrival rate, the service capacity, and the
different architectures used for each assignment.

Tables 4 and 5 below illustrate the task sizes and arrival rates
for each task assignment. The variable 𝑗 denotes the index of the
task assignment, which is used to differentiate between different task
assignments. Specifically, the variable ‘‘j’’ corresponds directly to the
IDs listed in Table 1. For instance, 𝑗 = 1 corresponds to task assignment
1 as defined within that table.

Regarding the variable 𝑟, it is utilized to differentiate between
transmission and computation entities for delay calculation. The indices
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r
(
(

Table 4
Task size for task assignment, V[j, r].

V[j, r] Transmission Computation (workload)

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6

V[1, r] 1∕𝜇𝐿
1 𝜙 𝜙 1∕𝜇𝑊

1 + 1∕𝜇𝑊
2 (1∕𝜇𝑊

3 ) 𝜙 𝜙

V[2, r] 1∕𝜇𝐿
1 1/𝜇𝐿

1 𝜙 𝜙 1∕𝜇𝑊
1 + 1∕𝜇𝑊

2 (1∕𝜇𝑊
3 ) 𝜙

V[3, r] 1/𝜇𝐿
1 1/𝜇𝐿

1 1/𝜇𝐿
1 𝜙 𝜙 1∕𝜇𝑊

1 + 1∕𝜇𝑊
2 (1∕𝜇𝑊

3 )

V[4, r] 1/𝜇𝐿
1 1∕𝜇𝐿

2 (1∕𝜇
𝐿
3 ) 𝜙 1∕𝜇𝑊

1 1∕𝜇𝑊
2 (1∕𝜇𝑊

3 ) 𝜙

V[5, r] 1/𝜇𝐿
1 1∕𝜇𝐿

2 (1∕𝜇
𝐿
3 ) 1∕𝜇𝐿

2 (1∕𝜇
𝐿
3 ) 1∕𝜇𝑊

1 𝜙 1∕𝜇𝑊
2 (1∕𝜇𝑊

3 )

V[6, r] 1/𝜇𝐿
1 1/𝜇𝐿

1 1∕𝜇𝐿
2 (1∕𝜇

𝐿
3 ) 𝜙 1∕𝜇𝑊

1 1∕𝜇𝑊
2 (1∕𝜇𝑊

3 )

V[7, r] 1/𝜇𝐿
1 𝜙 𝜙 1∕𝜇𝑊

1 + 1∕𝜇𝑊
2 + 1∕𝜇𝑊

3 ∗ 𝑝𝐴 𝜙 𝜙

V[8, r] 1/𝜇𝐿
1 1/𝜇𝐿

1 𝜙 𝜙 1∕𝜇𝑊
1 + 1∕𝜇𝑊

2 + 1∕𝜇𝑊
3 ∗ 𝑝𝐴 𝜙

V[9, r] 1/𝜇𝐿
1 1/𝜇𝐿

1 1/𝜇𝐿
1 𝜙 𝜙 1∕𝜇𝑊

1 + 1∕𝜇𝑊
2 + 1∕𝜇𝑊

3 ∗ 𝑝𝐴

V[10, r] 1/𝜇𝐿
1 1∕𝜇𝐿

3 𝜙 1∕𝜇𝑊
1 + 1∕𝜇𝑊

2 1∕𝜇𝑊
3 ∗ 𝑝𝐴 𝜙

V[11, r] 1/𝜇𝐿
1 1∕𝜇𝐿

3 1∕𝜇𝐿
3 1∕𝜇𝑊

1 + 1∕𝜇𝑊
2 𝜙 1∕𝜇𝑊

3 ∗ 𝑝𝐴

V[12, r] 1/𝜇𝐿
1 1/𝜇𝐿

1 1∕𝜇𝐿
3 𝜙 1∕𝜇𝑊

1 + 1∕𝜇𝑊
2 1∕𝜇𝑊

3 ∗ 𝑝𝐴

V[13, r] 1/𝜇𝐿
1 1∕𝜇𝐿

2 𝜙 1∕𝜇𝑊
1 1∕𝜇𝑊

2 + 1∕𝜇𝑊
3 ∗ 𝑝𝐴 𝜙

V[14, r] 1/𝜇𝐿
1 1∕𝜇𝐿

2 1∕𝜇𝐿
2 1∕𝜇𝑊

1 𝜙 1∕𝜇𝑊
2 + 1∕𝜇𝑊

3 ∗ 𝑝𝐴

V[15, r] 1/𝜇𝐿
1 1/𝜇𝐿

1 1∕𝜇𝐿
2 𝜙 1∕𝜇𝑊

1 1∕𝜇𝑊
2 + 1∕𝜇𝑊

3 ∗ 𝑝𝐴

V[16, r] 1/𝜇𝐿
1 1∕𝜇𝐿

2 1∕𝜇𝐿
3 1∕𝜇𝑊

1 1∕𝜇𝑊
2 1∕𝜇𝑊

3 ∗ 𝑝𝐴
Table 5
Arrival rate for task assignment, H[j, r].

H[j, r] Transmission Computation

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6

H[1, r] 𝜆 𝜙 𝜙 𝜆 𝜙 𝜙
H[2, r] 𝜆 𝜆𝑁 𝜙 𝜙 𝜆𝑁 𝜙
H[3, r] 𝜆 𝜆𝑁 𝜆𝑁𝑀 𝜙 𝜙 𝜆𝑁𝑀
H[4, r] 𝜆 𝜆𝑁 𝜙 𝜆 𝜆𝑛 𝜙
H[5, r] 𝜆 𝜆𝑁 𝜆𝑁𝑀 𝜆 𝜙 𝜆𝑁𝑀
H[6, r] 𝜆 𝜆𝑁 𝜆𝑁𝑀 𝜙 𝜆𝑁 𝜆𝑁𝑀
H[7, r] 𝜆 𝜙 𝜙 𝜆 𝜙 𝜙
H[8, r] 𝜆 𝜆𝑁 𝜙 𝜙 𝜆𝑁 𝜙
H[9, r] 𝜆 𝜆𝑁 𝜆𝑁𝑀 𝜙 𝜙 𝜆𝑁𝑀
H[10, r] 𝜆 𝜆𝑁 ∗ 𝑝𝐴 𝜙 𝜆 𝜆𝑁 𝜙
H[11, r] 𝜆 𝜆𝑁 ∗ 𝑝𝐴 𝜆𝑁𝑀 ∗ 𝑝𝐴 𝜆 𝜙 𝜆𝑁𝑀
H[12, r] 𝜆 𝜆𝑁 𝜆𝑁𝑀 ∗ 𝑝𝐴 𝜙 𝜆𝑁 𝜆𝑁𝑀
H[13, r] 𝜆 𝜆𝑁 𝜙 𝜆 𝜆𝑁 𝜙
H[14, r] 𝜆 𝜆𝑁 𝜆𝑁𝑀 𝜆 𝜙 𝜆𝑁𝑀
H[15, r] 𝜆 𝜆𝑁 𝜆𝑁𝑀 𝜙 𝜆𝑁 𝜆𝑁𝑀
H[16, r] 𝜆 𝜆𝑁 𝜆𝑁𝑀 ∗ 𝑝𝐴 𝜆 𝜆𝑁 𝜆𝑁𝑀

Table 6
Capacity in the rth resource, Y[r].

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6

𝐶𝑈𝐹 𝐶𝐹𝐸 𝐶𝐸𝐶 𝐶𝐹 𝐶𝐸 𝐶𝐶

𝑟 = 1, 𝑟 = 2, and 𝑟 = 3 denote the communication resources,
epresenting the links connecting User Equipment (UE) to fog nodes
𝑟 = 1), fog nodes to edge nodes (𝑟 = 2), and edge nodes to the cloud
𝑟 = 3), respectively. Conversely, 𝑟 = 4, 𝑟 = 5, and 𝑟 = 6 represent

the computational resources within the fog nodes (𝑟 = 4), edge nodes
(𝑟 = 5), and the cloud (𝑟 = 6), respectively.

In Table 4, terms within parentheses are used to denote alternative
parameters for multiclass task processing, analogous to the notations
presented in Table 1. These parentheses present options for the system
to choose from based on the specific task scenario.

With the task sizes, arrival rates, and service capacity for each task
assignment above, the total delay for each task assignment can be
expressed as

𝐷𝑗 = 𝛴6
𝑟=1𝑏(𝑗, 𝑟) (1)

where

𝑏(𝑗, 𝑟) =

{ 1
𝑌 [𝑟]
𝑉 [𝑗,𝑟]−𝐻[𝑗,𝑟]

, if V[j,r] ≠ 𝜙
(2)
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0 , if V[j,r] = 𝜙.
In the process of calculating the delay for communication links and
computation nodes, it needs the values provided in Tables 4–6. Addi-
tionally, it is crucial to consider transmission and propagation delays
when evaluating communication delays. Therefore, we incorporate the
propagation delay as an additional factor, which can be expressed as

𝑍𝑈𝐹 × 𝑓 (𝑉 [𝑗, 1]) +𝑍𝐹𝐸 × 𝑓 (𝑉 [𝑗, 2]) +𝑍𝐸𝐶 × 𝑓 (𝑉 [𝑗, 3]) (3)

where

𝑓 (𝑥) = 1 , if 𝑥 ≠ 𝜙
𝑓 (𝑥) = 0 , if 𝑥 = 𝜙.

(4)

Eq. (1) calculates the total delay, integrating various types of delays
experienced within the network. It specifically aggregates communi-
cation and computation delays encountered across different network
entities. The purpose is to provide a comprehensive measure of delay,
reflecting the cumulative impact of all processing and transmission
activities within the IDS system.

Eq. (2) then applies the queuing theory to compute the delay for
processing a flow at each network entity. It is derived by dividing the
capacity by the workload and then subtracting the arrival rate. This
approach helps in understanding how efficiently each entity processes
its portion of network traffic, which is crucial for optimizing the overall
system performance.

Lastly, Eq. (3) is used to determine the propagation delay between
nodes. It focuses on the time taken for data to travel from one point
to another within the network, which is critical for evaluating the
network’s response time and efficiency.

Consider Task Assignment 1 as the example for delay calculation,
where traffic processing occurs exclusively at the fog layer. The traffic
is transmitted from UE to a fog link with a flow length of 1∕𝜇𝐿

1 ,
an arrival rate of 𝜆 in 𝐻[1, 1], and a capacity of 𝐶𝑈𝐹 in 𝑌 [1]. The
transmission delay for this link can be calculated by inputting all
variables into Eq. (2).

Upon reaching the fog node, the traffic undergoes processing with a
flow workload of 𝑉 [1, 4], an arrival rate of 𝐻[1, 4], and the fog node’s
processing capacity of 𝑌 [4]. The computation delay is determined by
applying these values to Eq. (2). The total delay associated with task
assignment 1 is obtained by summing the computed transmission delay
from UE to the fog node and the computation delay at the fog node, as
determined by Eq. (1). Additionally, the propagation delay is included
as calculated from Eq. (3).
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Fig. 2. The overview of Auto-IDaS.
4. Auto-IDaS: AI for AI-based IDaS solution

The solutions in Fig. 2 outline how Auto-IDaS solves the problems.
This study has two main problems: the IDS model and service deploy-
ment, which includes task assignment and capacity allocation. In order
to solve those problems, we utilize DQN and TD3 algorithms.

The process pipeline of Auto-IDaS framework is initiated with the
capture of network traffic, which is served as the input data for sub-
sequent steps. Following this, the best-suited IDS model for the cur-
rent traffic conditions is evaluated and selected by DQN algorithm,
aiming to maximize detection effectiveness while considering system
constraints. Subsequently, the necessary processes across the network
architecture are allocated using the TD3 algorithm, taking into ac-
count various factors such as computational resources and latency
requirements to ensure optimal distribution and execution of tasks.

Furthermore, several enhancements have been implemented to tai-
lor these algorithms to the specific challenges of our IDaS framework:

• Customization of Reward Function: We have designed reward
functions for both DQN and TD3 that are tailored to the IDS
context, taking into account not just accuracy, but also cost
efficiency and detection speed, which are critical in IDaS.

• Action Space Optimization: The action spaces for both algo-
rithms have been carefully constructed to address the granular
nuances of IDS tasks, allowing for more precise model selections
and resource allocations.

• State Representation Enhancements: The state representations
used by the algorithms have been enriched to incorporate a more
comprehensive view of the system state, enabling more informed
and strategic decision-making by the agents.

• Hyperparameter Tuning: Through extensive experimentation,
we have fine-tuned the hyperparameters of both algorithms, en-
suring that they are optimally configured for the IDS environ-
ment.

• Integration with IDS: Both DQN and TD3 have been integrated
into the IDS pipeline to demonstrate a novel approach to model
selection and task assignment, one that is more responsive to
dynamic network conditions and capable of real-time adaptation.

• Benchmarking Against Traditional Models: We have included
a comparative analysis that benchmarks our improved DQN and
8

TD3 models against their traditional counterparts. This compar-
ison highlights the performance gains achieved through our en-
hancements.

• Contribution to Processing: We clarify the contributions made
during the processing phase by articulating the improvements in
model selection accuracy and system efficiency. We also demon-
strate how these enhancements lead to a more effective and
responsive IDS.

Section 4.1 details the IDS model selection using the DQN algorithm.
Following this, Section 4.2 elaborates on the capacity allocation solu-
tion utilizing the TD3 algorithm and compares its performance with
SA.

4.1. DQN for IDS model selection

A Deep Q-Network (DQN) is described in Algorithm 1, which finds
the optimal IDS model selection in different situations. RL is chosen
because it can dynamically predict future information and achieve ap-
proximate optimal performance based on exploration and exploitation.
The use of DQN can solve the problem of the state space (inputs) being
continuous, but the action space (outputs) being discrete.

In our DQN-based approach for optimal IDS model selection, it is
essential to define the environment (state), the agent (action), and the
reward, in addition to setting up an action-value neural network  and
a replay buffer 𝐵𝐷𝑄𝑁 .

The problem addressed in Algorithm 1 is episodic in nature. A
terminal state in the context of this algorithm is reached under two
conditions: firstly, the end of an individual episode occurs when the
maximum number of steps, denoted by 𝑄, within that episode is
attained, as indicated by the termination of the inner loop For{𝑞 = 1
to 𝑄}. Secondly, the global terminal state of the entire algorithm is
achieved when the episode count equals the total number of episodes
𝐸, as denoted by the completion of the outer loop For{episode =
1 to 𝐸}. Thus, the algorithm runs for 𝐸 episodes, with each episode
comprised of 𝑄 steps. The terminal state of an individual episode is
marked by reaching the 𝑄th step, and the global terminal state of the
algorithm is signified by the fulfillment of all 𝐸 episodes.

First, the state of our environment comprises the arrival traffic 𝜆 and
the malicious rate 𝑝𝐴. The choice of 𝜆 represents the volume of network
traffic, impacting the performance demands on the IDS. The malicious
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Algorithm 1 DQN for IDS Model Selection
1: Input: Arrival traffic rate 𝜆, probability of malicious flow 𝑝𝐴, set of binary

models 𝐵 , set of multi-class models 𝐺;
2: Output: The optimal IDS model selection 𝑓𝑄∗ ;
3: Initialize replay buffer 𝐵𝐷𝑄𝑁 ;
4: Initialize action-value network  with random weights 𝜃;
5: for episode = 1 to 𝐸 do
6: Initialize sequence 𝑠1 = {ℎ1} and pre-processed sequence 𝜙1 = 𝜙(𝑠1)
7: Initialize the best known action-value 𝑓𝑄∗ if available
8: for 𝑞 = 1 to 𝑄 do
9: With probability 𝜖 select a random action 𝑓𝑄

10: otherwise select 𝑓𝑄 = argmax𝑎  (𝜙(𝑠𝑞), 𝑎; 𝜃)
11: Execute action 𝑓𝑄 in emulator and observe reward 𝑟𝑞 and next state

ℎ𝑞+1
12: if reward 𝑟𝑞 for 𝑓𝑄 is higher than for 𝑓𝑄∗ then
13: Update the best known action-value: 𝑓𝑄∗ = 𝑓𝑄

14: end if
15: Set 𝑠𝑞+1 = 𝑠𝑡, 𝑎𝑡, ℎ𝑞+1 and pre-process 𝜙𝑞+1 = 𝜙(𝑠𝑞+1)
16: Store transition (𝜙𝑞 , 𝑎𝑞 , 𝑟𝑞 , 𝜙𝑞+1) in 𝐵𝐷𝑄𝑁
17: Sample random mini-batch of transitions (𝜙𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝜙𝑗+1) from 𝐵𝐷𝑄𝑁

18: Set 𝑦𝑗 =
{

𝑟𝑗 , if episode terminates at step 𝑗 + 1
𝑟𝑗 + 𝛾 max𝑎′  (𝜙𝑗+1, 𝑎′; 𝜃), otherwise

19: Perform a gradient descent step on (𝑦𝑗 − (𝜙𝑗 , 𝑎𝑗 ; 𝜃))2 with network
parameters 𝜃

20: end for
21: return the best known action-value function 𝑓𝑄∗

22: end for
23: return the trained action-value network  and the best known

action-value function 𝑓𝑄∗

rate 𝑝𝐴 measures the proportion of potentially harmful traffic, which is
vital for assessing the severity of threats the IDS must address. These
factors provide a comprehensive view of the network environment’s
current state.

Second, the action is denoted by the chosen IDS model selection,
represented as 𝑓𝑄∗ . This aligns the learning process with the practical
bjective of identifying the optimal IDS model selection for the given
etwork state.

Third, the reward structure is based on the performance of the
hosen IDS model combination, measured by metrics 𝑃 , 𝑈 , and 𝑆𝑄, and

defined as 𝑃 ×𝑝𝐴−(𝑈+𝑆𝑄)×𝜆. This reward structure balances effective
detection performance, fast detection time, and efficient resource use
under varying traffic and threat levels.

The process of Algorithm 1 commences with the initialization of a
replay buffer 𝐵𝐷𝑄𝑁 for storing experiences and an action-value net-
work  with randomly assigned weights 𝜃. Across multiple episodes,
each representing a unique sequence of actions and outcomes, the
state of the environment is established using arrival traffic 𝜆 that is
randomly taken from the CICIDS-2017 dataset and malicious rate 𝑝𝐴

and subsequently pre-processed.
Within each episode step, the algorithm either selects a random

action 𝑓𝑄 with a probability 𝜖 to explore, or it exploits known strategies
by choosing the action that maximizes the value predicted by the
network  . Post-action execution observes the resultant reward and
the ensuing state, updates the sequence, and stores this transition in
𝐵𝐷𝑄𝑁 . Furthermore, if the current reward 𝑟𝑞 for current 𝑓𝑄 is higher
than the previous one, then it updates the best-known action value of
𝑓𝑄∗ = 𝑓𝑄. A significant aspect of the algorithm is the periodic sam-
pling of mini-batches of transitions from the replay buffer, which are
then used to update the network weights 𝜃 through gradient descent.
This updating process aims to minimize the discrepancy between the
network’s predicted values and the computed target values based on
observed rewards and the discounted value of future actions.

This iterative procedure enables the DQN to progressively refine its
approach for deciding the optimal IDS model selection 𝑓𝑄∗ , adapting to
9

varying network conditions as indicated by 𝜆 and 𝑝𝐴. The reward func-
tion, integrating metrics such as detection performance (𝑃 ), detection
time (𝑈), and computation cost (𝑆𝑄), steers the DQN towards a balance
of F1 score, efficiency, and resource management in diverse scenarios.

4.2. Optimization for task assignments and capacities

This section explains our proposed solution, which employs the TD3
policy gradient algorithm to optimize task assignments and capacities.
Additionally, we utilize the SA algorithm as a basis for performance
comparison with TD3.

RL for optimizing task assignments and capacities
TD3 algorithm is described in Algorithm 2 for optimizing task

assignments and capacities. This optimization aims to minimize the
total cost while identifying optimal tasks and capacities. This method
can solve complex combinatorial optimization problems with a shorter
decision time.

Algorithm 2 TD3 for Optimizing Task Assignments and Capacities
1: Input: 𝑓𝑄∗ , 𝑀 , 𝑁 , 𝜆, 1∕𝜇𝐿

𝑖 , 1∕𝜇𝑊
𝑖 , 𝑝𝐴, 𝐶𝑈𝐹 , 𝐶𝐹𝐸 , 𝐶𝐸𝐶 , 𝑍𝑈𝐹 , 𝑍𝐹𝐸 , 𝑍𝐸𝐶 ,

𝑆𝐹 , 𝑆𝐸 , 𝑆𝐶 ;
2: Output: 𝐶𝐹 , 𝐶𝐸 , 𝐶𝐶 ;
3: Initialize replay buffer 𝐵𝑇𝐷3
4: Initialize critic networks 𝜃1 ,𝜃2 , actor-network 𝜋𝜙 with random

parameters 𝜃1, 𝜃2, 𝜋𝜙;
5: Initialize target networks 𝜃′1 ← 𝜃1, 𝜃′2 ← 𝜃2, 𝜙′ ← 𝜙
6: for 𝑡 = 1 to  do
7: State 𝑠 = [𝑆𝑇 , 𝐷]
8: Select action 𝑎 = [𝐶𝐶 , 𝐶𝐸 , 𝐶𝐹 ] with exploration noise 𝜋𝜙𝑠 + 𝜀
9: Calculate total cost 𝑆𝑇 and total delay 𝐷

10: Calculate reward 𝑟 = −𝑆𝑇 × 𝑐1 − (𝐷 − 𝛥𝐷) × 𝑐2
11: Observe new state 𝑠′

12: Store transition tuple (𝑠, 𝑎, 𝑟, 𝑠′) in 𝐵𝑇𝐷3
13: Sample random mini batch of  transitions (𝑠, 𝑎, 𝑟, 𝑠′) from 𝐵𝑇𝐷3
14: Calculate �̃�, 𝑦 and update 𝜃
15: if 𝑡 mod 𝑑 then
16: Update 𝜙 by deterministic policy gradient:

∇𝜙𝐽 (𝜙) = 𝑁−1
∑

∇𝑎𝑄𝜃(𝑠, 𝑎)|𝑎=𝜋𝜙(𝑠)∇𝜙𝜋𝜙(𝑠)

17: Update target networks

𝜃′ ← 𝜏𝜃 + (1 − 𝜏)𝜃′

𝜙′ ← 𝜏𝜙 + (1 − 𝜏)𝜙′

18: end if
19: end for
20: return 𝐶𝐹 , 𝐶𝐸 , 𝐶𝐶

Using this approach, we must define the environment (state), agent
(action), and reward. First, the environment is the total cost 𝑆𝑇 , and
the total delay 𝐷. Second, the action is represented by corresponding
capacity allocations. Third, reward is defined as 𝑟 = −𝑆𝑇 × 𝑐1 − (𝐷 −
𝛥𝐷) × 𝑐2, where 𝑐1 and 𝑐2 are used to balance the weights. To address
the overestimation problem, the TD3 algorithm incorporates two critic
networks, 𝑄𝜃1 and 𝑄𝜃2 . In addition, it includes an actor-network 𝜋𝜃 for
policy gradient optimization. Each network has a corresponding target
network. Lastly, the presence of a replay buffer 𝐵𝑇𝐷3 generates a stable
network of actors.

The process of Algorithm 2 commences with initializing a replay
buffer, the critic, and actor networks with random parameters to fa-
cilitate unbiased learning from scratch. Corresponding target networks
are also established to provide stable target values during the training
updates. As the algorithm iterates through a predetermined number of
episodes, it captures the state of the environment, denoted by 𝑆, 𝑆𝑇 , 𝐷.
Then, the algorithm selects an action regarding capacity for each tier.
This action is augmented with exploration noise to ensure a com-
prehensive search across the action space, thus preventing premature

convergence to suboptimal policies.
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The algorithm then calculates the total cost associated with the
selected action and observes the immediate reward, which reflects the
efficacy of the action relative to the system’s objectives. Following this,
the algorithm updates its state representation and records the transition
in the replay buffer, ensuring that these experiences can be revisited
to refine the decision-making process. In a key step, the algorithm
employs a mini-batch approach to sample past transitions, which helps
break the temporal correlations and promotes more robust learning.

One of the distinguishing features of TD3, which is incorporated
in this algorithm, is the delayed policy update mechanism. By up-
dating the policy only at specific intervals, the algorithm stabilizes
the learning process by preventing the actor-network from frequently
chasing moving targets. The deterministic policy gradient then updates
the actor-network, guiding it toward actions expected to yield higher
rewards. Complementing this, the target networks are softly updated,
which blends the old and new parameters to ensure that the targets
change slowly over time, thereby contributing to the overall stability of
the learning process. This iterative cycle of action selection, evaluation,
and refinement continues until the algorithm converges to a policy that
effectively balances task performance with computational efficiency.

SA for optimizing task assignments and capacities
The SA algorithm, detailed in Algorithm 3, is applied to optimize

task assignments and capacities (resources for tasks) and is a bench-
mark against the TD3 algorithm. This algorithm excels in identifying
globally optimal capacity allocations at minimal costs. Its ability to
perform stochastic variations of the current solution helps it avoid
getting trapped in local minima, thereby making it a highly effective
tool for addressing complex combinatorial optimization problems.

Initially, we randomly select 𝐶𝐶 , 𝐶𝐸 , and 𝐶𝐹 between minimum and
maximum constraints. The minimum constraint is set to avoid delay
values less than zero since a negative delay means the traffic is never
processed. Typically, the maximum constraint is determined based on
the actual maximum capacity of the node; however, in this study, it is
assumed to be 30 times the minimum constraint. Next, calculate the
total cost and average delay. The new solution replaces the current
solution if it has a lower total cost and meets the delay threshold.
Otherwise, it may be accepted based on a 1∕𝑒𝑥𝑝(𝛥𝑆′∕𝑡) probability.

Algorithm 3 SA for Optimizing Task Assignments and Capacities
1: Input: 𝑓𝑄∗ , 𝑀 , 𝑁 , 𝜆, 1∕𝜇𝐿

𝑖 , 1∕𝜇𝑊
𝑖 , 𝑝𝐴, 𝐶𝑈𝐹 , 𝐶𝐹𝐸 , 𝐶𝐸𝐶 , 𝑍𝑈𝐹 , 𝑍𝐹𝐸 , 𝑍𝐸𝐶 ,

𝑆𝐹 , 𝑆𝐸 , 𝑆𝐶 ;
2: Output: 𝐶𝐹 , 𝐶𝐸 , 𝐶𝐶 ;
3: Initialize 𝐶𝐶 , 𝐶𝐸 , 𝐶𝐹 , 𝑆𝑇 , 𝑡𝑖𝑛𝑖, 𝛼;
4: 𝑡 = 𝑡𝑖𝑛𝑖
5: while 𝑡 > 𝑡𝑡𝑟𝑚 do
6: 𝐶𝐶 ′ = rand[𝐶𝐶

𝑚𝑖𝑛, 𝐶
𝐶
𝑚𝑎𝑥]

7: 𝐶𝐸′ = rand[𝐶𝐸
𝑚𝑖𝑛, 𝐶

𝐸
𝑚𝑎𝑥]

8: 𝐶𝐹 ′ = rand[𝐶𝐹
𝑚𝑖𝑛, 𝐶

𝐹
𝑚𝑎𝑥]

9: Calculate total cost 𝑆′ = 𝐶𝐹 ′𝑆𝐹 + 𝐶𝐸′𝑆𝐸 + 𝐶𝐶 ′𝑆𝐶

10: Calculate average delay 𝐷′

11: 𝛥𝑆′ = 𝑆′ − 𝑆𝑇

12: if 𝑆′ ≤ 𝑆 and 𝐷′ ≤ 𝛥𝐷 then
13: Accept new 𝐶𝐶 = 𝐶𝐶 ′ , 𝐶𝐹 = 𝐶𝐹 ′ , 𝐶𝐸 = 𝐶𝐸′ , 𝑆𝑇 = 𝑆′

14: else if random() < 1
exp(𝛥𝑆′∕𝑡)

then
15: Accept new 𝐶𝐶 = 𝐶𝐶 ′ , 𝐶𝐹 = 𝐶𝐹 ′ , 𝐶𝐸 = 𝐶𝐸′ , 𝑆𝑇 = 𝑆′

16: end if
17: Decrease the temperature: 𝑡 = 𝛼 × 𝑡
18: end while
19: return 𝐶𝐹 , 𝐶𝐸 , 𝐶𝐶

In this study, the control parameters 𝑡 (temperature) and the cooling
parameter (𝛼) were used to control the stochasticity of the search
process. At high temperatures, poor solutions are accepted with a
probability of 1∕𝑒𝑥𝑝(𝛥𝑆′∕𝑡) to prevent local optimization. Because ex-
loration takes precedence in the heat phase. Instead, the focus under
ow-temperature shifts to only acceptable and reasonable solutions. The
earch terminates when the temperature reaches the 𝑡 .
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𝑡𝑟𝑚
5. Results and analysis

This section analyzes various detection modes of ML-based IDS and
capacity optimization of IDaS task assignments. The section begins by
explaining the various detection modes and the baseline configurations,
detailing the parameters used. It then analyzes the IDS model selection
by investigating tenant traffic learning to determine the performance of
a dynamic model in selecting the appropriate models for different traf-
fic patterns. Subsequent subsections explore the architecture alternative
of IDaS and compare the performance between traditional optimization
methods and RL techniques, focusing on decision time and quality.

5.1. ML models for IDS

Each detection mode in our study leverages a selection of IDS
models chosen for their effectiveness in intrusion detection scenarios.
For binary detection tasks, we have opted for One-Class Support Vector
Machines (OCSVM) and Autoencoders (AE) due to their capability
to capture anomalies and deviations from normal network behavior.
Similarly, for multi-class classification, we employ Neural Networks
(NN) and Random Forests (RF) for their ability to handle complex
patterns and diverse attack types.

These ML models were selected based on Verkerken et al. (2023),
which provides an in-depth analysis of various models within a multi-
tiered, hierarchical intrusion detection context. Verkerken et al. (2023)
evaluated each model’s unique capabilities to address specific intrusion
threats, leveraging their individual strengths to bolster overall detec-
tion performance. Our decision to use these models was underpinned
by their proven performance in layered defense architectures similar to
those employed in our study. This relevance to our work’s objective —
to explore and refine IDS capabilities within a hierarchical framework
— made them particularly pertinent for inclusion in our analysis.

We then proceed to train these models using the CICIDS-2017
dataset. Our selection of this dataset is based on several considerations.
Firstly, CICIDS-2017 is widely recognized in the research community
as a benchmark dataset for evaluating IDS solutions, offering a diverse
range of network traffic scenarios and attack types. Secondly, the
dataset contains a large volume of labeled network traffic data, en-
abling comprehensive training and evaluation of our proposed method.
Lastly, the dataset’s design mirrors real-world complexities, including
the latest attack vectors and benign activities, making it an ideal choice
for testing the effectiveness of IDS solutions in detecting and differenti-
ating between malicious and normal traffic. To facilitate comprehensive
training and evaluation of our proposed IDS framework, we partitioned
the CICIDS-2017 dataset into three segments: training, validation, and
testing.

It is noteworthy that, based on findings from Verkerken et al.
(2023), we opted not to include neural networks for the two-stage
analysis. This decision was informed by evidence suggesting that neu-
ral networks may not consistently outperform random forests in this
specific context, further supporting our experimental design choices.

5.2. Parameter settings

Table 7 lists the parameters utilized in IDS model selection and op-
timization for task assignments and capacities. The parameters within
our Auto-IDaS framework have been set manually. This approach was
chosen to ensure that our experimental setup reflects both the estab-
lished research and the operational realities of contemporary network
systems. Some of the parameters were derived from existing literature
to align our work with recognized benchmarks and ensure comparabil-
ity with prior studies. We believe that this combination of literature-
derived and empirically-measured parameters enables our study to
present a realistic and applicable reflection of IDaS system operations.
It also facilitates the replication of our results and contributes to our
research’s overall integrity and utility.
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Table 7
Baseline configuration for experiment.

Notation Configuration Unit

M 400 Nodes
N 20 Nodes
𝜆 100 Flows/s
𝑝𝐴 0.2
1∕𝜇𝐿

1 124.99 kb/flow
1∕𝜇𝐿

2 6.62 kb/flow
1∕𝜇𝐿

3 6.62 kb/flow
1∕𝜇𝑊

1 1 137 406 Instruction/flow
1∕𝜇𝑊

2 (AE) 310 423 Instruction/flow
1∕𝜇𝑊

3 (RF) 142 032 Instruction/flow
𝑍𝑈𝐹 3.335 × 10−6 Seconds. Distance: 1 km
𝑍𝐹𝐸 3.335 × 10−5 Seconds. Distance: 10 km
𝑍𝐸𝐶 3.335 × 10−3 Seconds. Distance: 1000 km
𝐶𝑈𝐹 1 Gbps
𝐶𝐹𝐸 100 Gbps
𝐶𝐸𝐶 100 Gbps
𝑆𝐹 20 Money units/instruction
𝑆𝐸 15 Money units/instruction
𝑆𝐶 10 Money units/instruction
𝛥𝐷 0.5 and 0.02 s
𝛥𝑈 30 s
𝛥𝑆𝑄 20 s (GPU time)
𝛥𝑆𝑄 20 s (GPU time)
𝛥𝑃 0.75

During the IDS model selection experiment, we conducted 200
iterations of simulations with varying traffic and malicious rates. In
each iteration, we randomly sampled traffic from the CICIDS-2017
dataset. We then compared the average performance of six fixed IDS
models against the performance of six IDS models dynamically selected
by DQN.

For task assignments and capacities optimization, our setup com-
prised a cloud node and 400 edge nodes, with each edge node covering
20 fog nodes to ensure comprehensive coverage across the large area,
and the link bandwidth based on a 5G network (Lai et al., 2021).
We determined the distances between tiers from Thai et al. (2019)
and used the flow length from Megyesi and Molnár (2013) for pre-
processing. The probability of malicious flow (𝑝𝐴) is manually defined.
We set this probability to 0.2 by default, aligning it with a realistic
proportion of malicious traffic in typical network environments. This
value balances low-threat activity and heavy attack scenarios, offering
a practical middle ground for evaluations. By selecting this default
value, we aim to approximate real-world IDaS settings, ensuring the
practicality and applicability of our results.

Furthermore, to measure the performance of the binary (autoen-
coder) and multi-class (random forest) models, we monitored instruc-
tion numbers using PERF on Linux and conducted tests on an Intel
I5-12400F 2.5 GHz CPU. Then we examined the computation costs,
assigning higher costs to the lower tiers of computing power. This
accounts for the increased costs in the lowest tier, including real estate,
cooling, and maintenance. In contrast, using large hyperscale data
centers, costs can be reduced through economies of scale (Lai et al.,
2021). Finally, we set the delay threshold between 0.5 and 0.02 to
compare the difference in the cost of task assignment.

5.3. IDS model selection: Single- vs. Two-stages

In this study, we developed six ML-based IDS models. In the single-
stage IDS framework, we implemented AE and OCSVM for binary
detection, along with RF and NN for multi-class classification. Addi-
tionally, we constructed two-stage IDS models, namely AE+RF and
OCSVM+RF. The evaluation of IDS models is influenced by three
critical factors: detection performance (F1 score), detection time, and
computation cost. Our experiments also revealed that RF is more
11
Fig. 3. The detection performance of IDS model.

Fig. 4. Detection time for various IDS models.

suitable as the second-stage model than NN, exhibiting superior per-
formance in those three factors. This result is elaborated on in the
following subsection, providing a comprehensive understanding of the
performance of different IDS models.

Fig. 3 shows the performance of the detection performance from
all IDS models. We tested the performance by adjusting the malicious
rate from 0 to 100%. Observing the results in Fig. 3, in the binary
detection, we noted that AE achieves optimal performance in benign
traffic scenarios but experiences a substantial decline in F1 score as
the volume of malicious traffic increases from 0.87 to 0.79. Conversely,
OCSVM exhibits the opposite behavior, with its F1 score improving as
the amount of malicious traffic grows. These findings highlight AE’s
proficiency in handling normal traffic patterns and OCSVM’s ability to
adapt to more complex malicious traffic situations.

Furthermore, RF outperforms NN in multi-class classification. Based
on this result, we have selected RF as the second stage in two-stage
IDS models. The results indicate that employing two-stage IDS models
demonstrates superior capabilities compared to using a single NN or
RF model alone. The combinations of OCSVM+RF effectively leverage
the strengths of both anomaly-based and signature-based detection
methods, resulting in enhanced performance.

Analyzing Figs. 4 and 5, we investigated the resource consumption
and detection times of OCSVM and RF as the traffic rate increases.
OCSVM exhibits a significant increase in resource consumption and
detection times due to its algorithmic complexity. In contrast, RF
demonstrates relatively lower resource consumption and faster detec-
tion times. These findings highlight the advantages of RF, which are
attributed to its parallelized nature and efficient tree-based algorithm.

Our experiments found that IDS models perform differently in var-
ious scenarios. No single-stage IDS model can handle all traffic and
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Fig. 5. Computation cost (GPU time) for various IDS models.

malicious rates effectively. Employing a two-stage IDS model can en-
hance the detection performance but result in a longer detection time
and higher computation cost, which is inappropriate when a massive
amount of incoming traffic needs to be handled. Therefore, the selec-
tion of suitable IDS combinations is crucial. We utilize DQN to choose
IDS combinations dynamically based on our observations to address
this dynamic requirement.

5.4. Model selection (dynamic vs. Static)

The performance of IDS models varies across different scenarios,
making it challenging to find a single model that can handle diverse
traffic rates and levels of malicious activity. Recognizing the dynamic
nature of network environments, we address this challenge by em-
ploying DQN to dynamically select IDS models that are well-suited for
specific traffic conditions. This allows us to adapt our approach to the
changing nature of network traffic and optimize the performance of the
IDS system.

Fig. 6 illustrates the average reward for each model combination in
managing fluctuating benign and malicious traffic. Notably, employing
DQN to dynamically select models for handling traffic proves more ef-
fective than other fixed IDS models, consistently maintaining a reward
above 80%.

Furthermore, a detailed examination of each model’s reward when
facing exclusively benign or malicious traffic in fluctuating environ-
ments reveals valuable insights. As illustrated in Fig. 7, the rewards
for models tackling only benign or malicious traffic are examined sep-
arately. This analysis highlights that no static model consistently excels
in handling the dynamic nature of such traffic. For example, AE shows
commendable performance in benign traffic scenarios, achieving a high
reward, but its efficacy significantly diminishes in the presence of
malicious traffic. On the other hand, AE+RF presents a more balanced
performance, resulting in rewards of 76.81 and 79.97 in benign and
malicious traffic scenarios, respectively. However, this amalgamation
incurs a substantial computation cost, adversely impacting the overall
reward. In contrast, employing a DQN to dynamically select the most
appropriate model in response to fluctuating traffic conditions emerges
as a more efficient strategy.

Moreover, we assess the percentage differences in performance
among various IDS models. To quantify these disparities when em-
ploying DQN for dynamic model selection compared to static models
in handling both benign and malicious traffic, we apply the following
formula:
(

RL on 6 (DQN) − Value of Other Model
Value of Other Model

)

× 100%

In handling the benign traffic, utilizing DQN to dynamically select
models surpasses the AE model by 1.34%, OCSVM by 26.09%, RF by
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Fig. 6. Average reward of IDS models in handling fluctuating traffic.

Fig. 7. Reward of IDS models in handling benign and malicious traffic.

7.45%, NN by 9.97%, and OCSVM+RF by 27.04%. In malicious traffic,
it outperforms AE by 13.79%, OCSVM by 0.29%, RF by 0.42%, NN by
3.29%, and AE+RF by 15.51%. Summarizing these findings, utilizing
DQN to select models dynamically outperforms the other models with
a range of effectiveness improvement from 0.29% to 27.04% across
different scenarios, highlighting its varied but generally superior per-
formance in detecting benign and malicious activities. This suggests the
approach effectively balances the tradeoff between F1 score, detection
time, and computation cost.

Table 8 shows the decision of DQN made under different traffic
conditions. As the traffic increases, the impact on detection time is
considered by DQN, which then selects a single model with a higher
reward. Moreover, in the presence of malicious traffic, DQN tends to
choose an IDS model with better detection capabilities. The ability of
DQN to dynamically select IDS model architectures aligns with our
expectations and offers valuable insights. It empowers the IDS system to
adapt and react to evolving network conditions, ensuring optimal per-
formance across various traffic scenarios. By leveraging RL techniques,
such as DQN, we can harness the power of intelligent decision-making
to enhance the effectiveness and efficiency of IDS systems in real-world
environments.

5.5. Optimization for task assignment and capacities

Architecture alternatives: 1- vs. 2- vs. 3-tier
Different task assignments can result in varying optimal capacity

allocations and total costs under the same data arrival rate. We utilized
SA to determine the optimal capacity allocations while keeping the
data arrival rate and malicious rate fixed at 100 flows/s and 0.2,
respectively. By comparing the total costs, we evaluate the performance
of different task assignments in terms of cost efficiency.

Figs. 8 and 9 compare the total cost after allocating capacity to each
tier between task assignments with tightened delay thresholds (0.02 s)
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Table 8
DQN decision under different conditions.

Traffic rate 100 000 100 000 100 000 100 000 500 000 500 000 500 000 500 000

Malicious rate 0 0.2 0.4 1 0 0.2 0.4 1
Decision AE AE+RF OCSVM+RF OCSVM+RF AE RF OCSVM OCSVM
Fig. 8. Total cost of task assignment with delay threshold = 0.02 s.

and loose delay thresholds (0.5 s). In scenarios where a single-tier
architecture is employed and the delay threshold is set tightly, utilizing
the edge results in the lowest total cost (task assignment: –/pb/– and
–/pm/–). This is because the edge provides the most suitable location
and computation capacity compared to the fog and cloud. The fog,
being the closest computation resource to the tenant, incurs a higher
cost due to its highly distributed computation capacity. On the other
hand, the cloud has lower computation costs but is unsuitable due to
higher propagation delays.

However, as seen in Fig. 8, collaborating the edge with the cloud
by splitting the IDS tasks and forming a two-tier architecture yields a
better result, requiring a lower computation cost than utilizing only
the edge. Balancing the workload to the higher tier provides more
scalability, thereby reducing costs. Furthermore, employing more tiers
in a three-tier architecture scenario does not offer advantages, as it
increases fog computing costs and extends transmission time between
tiers. As a result, the optimization algorithm incurs additional costs to
meet the delay threshold.

Furthermore, in scenarios where the delay threshold is loose, as
shown in Fig. 9, utilizing the cloud results in the lowest computation
cost. This is attributed to the system’s ability to tolerate the effects of
propagation delay. Consequently, processing the entire workload in the
cloud is the optimal strategy for reducing computation costs.

These results underscore the significance of selecting the appropri-
ate architecture based on the characteristics of arrival traffic and the
specified delay threshold. Service providers must continually adjust
their configurations to minimize computation costs, emphasizing the
need for adaptability in response to evolving network conditions and
cost constraints. However, traditional optimization methods pose a
challenge for service providers, as they necessitate longer optimization
times whenever adjustments are needed.

While other traditional optimization algorithms could potentially be
used, the performance differential between SA and other conventional
methods may not be substantial. SA’s robustness and depth of explo-
ration provide unique benefits that are valuable in the comprehensive
evaluation of IDS architectures.

In the following section, we delve into a performance comparison
between utilizing traditional optimization (SA) and RL for optimizing
capacity allocation to reduce computation costs, explaining why RL
serves as a solution to address this challenge.
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Fig. 9. Total cost of task assignment with delay threshold = 0.5 s.

Traditional optimization vs. Reinforcement learning
In the last section, we utilized SA to optimize capacities for various

task assignments, aiming to minimize costs under a fixed arrival rate.
However, real-world scenarios often involve fluctuating arrival rates,
necessitating different capacities to achieve cost efficiency. While sim-
ulated annealing can provide the global optimum, its slow convergence
limits its applicability. We introduced RL in the control plane to ad-
dress this, enabling us to make faster decisions and obtain satisfactory
capacities. This approach allows for adaptive capacity adjustments,
accommodating changing arrival rates and reducing decision times
compared to traditional optimization algorithms.

The experimental results demonstrate that RL incurs approximately
10% higher costs compared to simulated annealing in terms of per-
formance quality, as shown in Fig. 10. In terms of decision time, RL
requires a mere 4.2 × 10−5 s, as shown in Fig. 11, whereas simulated
annealing takes 2.3×102 s, indicating a remarkable difference of 5×106

times.
This significant discrepancy in decision time can be attributed to

the operational mechanisms of RL and SA. SA relies on continuous re-
calculations of optimization parameters upon receiving updated arrival
rates, leading to prolonged decision times. In contrast, RL, particularly
the TD3 algorithm utilized in our study, leverages a pre-trained actor
model to determine capacity allocation swiftly and efficiently. TD3
streamlines the decision-making process using this pre-trained model,
resulting in remarkably faster optimization.

This distinct advantage of TD3 over SA underscores the effectiveness
of RL approaches, particularly in scenarios where rapid and reliable
optimization solutions are paramount. While SA remains a viable tradi-
tional optimization method, its inherent computational overhead limits
its applicability in time-sensitive contexts, highlighting the significance
of adopting the RL technique for optimizing tasks and capacities.

6. Conclusions and future works

Our study proposed an innovative solution named Auto-IDaS, which
utilizes RL to optimize the IDaS system. This approach involves apply-
ing RL to select the most suitable IDS models intelligently, ensuring
a balance between detection performance (F1 score), detection time,
and computation costs. This methodology empowers IDaS to dynam-
ically adapt to the constantly shifting IDS model based on network
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Fig. 10. Total cost with –/p/bm (SA vs. TD3).

Fig. 11. Decision time with –/p/bm (SA vs. TD3).

traffic conditions, significantly enhancing the service’s efficiency and
effectiveness.

In addition, the paper addresses the challenge of optimizing cost al-
location within the IDaS system. TD3, as the RL algorithm, is employed
to minimize computation costs, diverging from traditional optimization
techniques that often face extended convergence times. The system can
make faster and more effective decisions by leveraging RL’s dynamic
adaptability to network changes and its ability to learn from ongoing
behavior.

Our evaluations revealed that different IDS models, such as the
Autoencoder and OCSVM, have unique strengths, with the former
excelling in benign traffic scenarios and the latter in complex malicious
situations.

A significant breakthrough was achieved by employing RL’s DQN
algorithm for dynamic model selection, which surpassed static models
by achieving higher rewards ranging from 0.29% to 27.04%. This
approach effectively harmonized crucial factors such as F1 score, de-
tection time, and computation cost. In terms of capacity allocation, our
comparison of SA and RL, specifically using the TD3 algorithm, showed
that TD3 significantly accelerated decision times by about 5×106 times
while maintaining decision quality close to SA’s performance, within a
10% range.

Drawing from these findings, we recommend that IDaS providers
focus on optimizing model selection and adapting to tenant traffic
patterns. This is critical for achieving an effective balance of F1 score,
detection time, and cost. Particularly, the adoption of TD3 for capacity
allocation is advised due to its rapid decision-making capability and
satisfactory decision quality, making it highly suitable for dynamic
network environments.

Future research could focus on broadening the application of AI
within IDaS, especially through the advancement of ML and RL algo-
rithms. This could include exploring hybrid models that amalgamate
14
various ML techniques to enhance detection precision and efficiency.
There is also an opportunity to enrich the RL models used in Auto-
IDaS by integrating them with cutting-edge RL algorithms, poten-
tially refining the optimization of IDS model selection and resource
allocation.

Additionally, the scalability and flexibility of the proposed RL-
based approaches warrant further investigation, particularly in ex-
pansive and fluctuating network contexts. Addressing interpretability
and explainability in ML and RL-driven systems represents a cru-
cial research frontier, promoting transparency and building trust in
automated decision-making within cybersecurity.

Moreover, evaluating the performance of the Auto-IDaS framework
using live data streams is essential to confirm its efficacy in real-world
settings. Finally, considering the rapid evolution of next-generation
machine learning — such as integrating IDS with federated learning —
there is a pressing need to analyze how Auto-IDaS manages increased
complexities in more sophisticated environments.
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